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SUMMARY 

A new continuous reproducing kernel interpolation function which explores the attractive features of the flexible 
time-frequency and space-wave number localization of a window function is developed. This method is motivated 
by the theory of wavelets and also has the desirable attributes of the recently proposed smooth particle 
hydrodynamics (SPH) methods, moving least squares methods (MLSM), diffuse element methods (DEM) and 
element-free Galerkin methods (EFGM). The proposed method maintains the advantages of the free Lagrange or 
SPH methods; however, because of the addition of a correction function, it gives much more accurate results. 
Therefore it is called the reproducing kernel particle method (RKPM). In computer implementation RKPM is 
shown to be more efficient than DEM and EFGM. Moreover, if the window function is P, the solution and its 
derivatives are also P in the entire domain. Theoretical analysis and numerical experiments on the 1D diffusion 
equation reveal the stability conditions and the effect of the dilation parameter on the unusually high convergence 
rates of the proposed method. Two-dimensional examples of advection-diffusion equations and compressible 
Euler equations are also presented together with 2D multiple-scale decompositions. 

KEY WORDS multiple scale decomposition; correction function; multi-resolution analysis; reproducing kernel 
function; wavelet; mesh- (or grid-) free particle methods 

1. INTRODUCTION 

During the last two decades considerable effort has been devoted to the development of mesh-free or 
grid-free methods. In most methods the interpolation functions are usually established by enforcing 
certain continuity requirements around a set of ordered (equally spaced) points. However, owing to 
deformation, this set of points can become highly disordered and the accuracy deteriorates. In 
addition, if the interpolation methods, such as finite element and finite difference methods, require a 
mesh or a grid, the distorted mesh can terminate the calculation owing to mesh entanglement and 
other problems. 

Among the mesh- or grid-free methods are the smooth particle hydrodynamics (SPH) methods, 
which depend only on a set of disordered points or particles, developed by Lucy' and Gingold and 
Monaghan2, among others, the diffuse element methods (DEM) developed by Nayroles et d 3  and the 
element-free Galerkin methods (EFGM) recently proposed by Belytschko et d4. The last two methods 
are based on the moving least squares interpolation functions (MLSM) presented by Lancaster and 
Salkauskas.' None of these methods requires a finite difference grid or a finite element mesh. 
Furthermore, if the kernel functions (used in SPH methods) and the weighting functions (used in 
MLSM, DEM and EFGM) and their derivatives are continuous, the solution and its derivatives are also 
continuous. The truly mesh-free characteristics, the continuous solution and the continuous derivatives 
are the key selling points of these methods. 
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The most attractive feature of SPH methods in a large-deformation analysis is the free 
Lagrange concept. Although SPH methods work well in the absence of boundaries (since the 
boundary terms are discarded in the formulation; see e.g. Reference 6 )  and when the number of 
unknowns (nodes) is large, they are not as accurate as the regular finite element methods; see e.g. 
Reference 7. From our study of SPH interpolation functions via a simple 1D Galerkin formulation (see 
Section 7), we found that there is an additional deficiency in the SPH formulation. It is related to the 
boundary correction term of the reproducing kernel approximation. We shall make an attempt to 
identify this deficiency (via a correction function) and present our views on improving the SPH kernel 
approximation. 

After reviewing the moving least squares interpolation functions and the diffuse element methods, 
Belytschko et aL4 pointed out that an assumption made by Nayroles et al.,3 namely that the 
interpolation coefficients are constants, detracts from the accuracy of the method. They showed that by 
adding more accurate derivatives and enforcing boundary conditions by Lagrange multipliers, the 
methods could achieve very high rates of convergence. From our experience EFGM is more accurate 
than the finite element methods and hence the SPH methods, especially for a small set of nodes. One 
main drawback of EFGM is the computational expense and we found that it is more computationally 
intensive than the SPH methods. 

The objective of this paper is along the same lines of development as SPH, DEM and EFGM: to 
develop accurate and efficient mesh-free interpolation functions. Since a continuous reproducing 
kernel can be derived for this proposed method and it is also a Lagrangian particle method, we 
shall call this development the Reproducing Kernel Particle Method (RKPM). The proposed 
approach is motivated by the theory of wavelets (see e.g. Reference 8), in which a function is 
represented by a combination of the dilation and translation of a single wavelet, which is a window 
function. In a wavelet analysis, similarly to the SPH interpolation kernel, the interpolation coefficients 
are defined in terms of the integral window transform of the window function and the solution itself. 
We shall borrow three key ideas from wavelet analysis: (i) the integral window transform, (ii) the 
dilation and translation of a window function and (iii) the continuous and discrete reproducing kernel 
approximations. It is noted that the window functions used in this paper are not wavelets. Good 
candidates for window functions are the scaling functions used to produce wavelets, since these scaling 
functions can be constructed to be orthogonal with respect to their translation, and a multiresolution 
ana ly~is '~~  can also be performed. Detailed discussion on multiple-scale wavelet and reproducing 
kernel methods can be found in Reference 11. In addition, the similarity between the hp-adaptive 
methods and the multiple scale W M  is also given in Liu and Chen". The application of RKPM to 
large deformation structural dynamics is presented in Liu et a1." 

We shall show the similarities among the smooth particle hydrodynamics methods, the diffuse 
element methods, the element-free Galerkin methods and the reproducing kernel particle methods. We 
shall also show that SPH and RKPM are indeed developed through a continuous reproducing kernel 
approximation, whereas DEM and EFGM, like finite elements, are developed through a discrete 
reproducing kernel approximation. As a by-product of this development, the concept of dilation of a 
window function will be used to explain why the accuracy of the diffuse element methods decreases 
relative to the element-free Galerkin methods. 

In the next section some preliminary concepts of integral window transform and SPH interpolation 
kernel functions are reviewed. In Section 3 the reproducing kernel particle interpolation functions are 
derived. In Section 4 the effect of the dilation parameter on the reproducing kernel, time-frequency or 
space-wave number localization, and the stability condition are discussed. In Section 5 some examples 
of reproducing kernel window functions are presented. The similarities among SPH, DEM, EFGM and 
RKPM interpolation functions are given in Section 6. Numerical experiments which confirm the 
theoretical analysis are presented in Section 7, followed by conclusions in Section 8. 
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2. PRELIMINARIES 

2. I .  Dilation and translation of a window function 

support B(x), then 
Let x denote the spatial co-ordinates. If @(x) is a window function located at x = 0 which has a 

@(x) # 0 in B(x) ( 1 4  

@(x) = 0 outside B ( x ) .  (1b) 
The dilation and translation of @(x), denoted Oab(x) is defined as 

is a window function located at x = b with a support scaled by the dilation parameter a. The function 
E(a) appearing in (2) scales @ab(X) such that 

when the support B(x)  is within the spatial region of interest, R,. It is noted that when b is close to the 
boundary of R,, aR,, the integral of Oab(x) over R, will be less than one. We believe that this is a 
drawback of SPH methods as well as all other reproducing kernel methods, including wavelets, which 
assume the region is unbounded. 

2.2. Integral window transform and SPH interpolation kernel functions 

The integral window transform of a real function u(x) with a real window fbction @a&) is defined 
as 

As a matter of fact, one of the main concepts of the SPH method is to find a suitable smooth 
reproducing kernel function @(x) that mimics the D i m  delta function. Hence, when a is chosen to 
approach zero and when b = x, the reproducing kernel approximation of u(x), denoted uh(x), is given 
bY 

Discretizing the integral of ( 5 )  by NP distinct nodes (points) using a numerical quadrature formula 
gives 

NP 
U h  (X) M E ( U ) @  r?) U (Xj)A VJ . 

J=l 

Equation (6a) can be written in a more familiar notation, in terms of generalized global shape functions 
NJ(x), as 

NP 
no sum on J, 
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where uJ = u(xJ) and AVJ # 0 is the Jth nodal domain (volume in 3D, area in 2D and length in ID) 
associated with quadrature point X J  The sum of all AVJ gives the total domain i.e. 

NP 
C A V J  = V 
J= I 

The SPH methods use a similar interpolation formula to that given in (6), but instead of AVj and 
E(u)@((xJ - x)/u), AMj and pJE(u)@((x, - x)/a) are employed, where AMJ and pJ are the Jth particle 
mass and density respectively. With this substitution in (6a) or (6b) the SPH approximation can be used 
in standard Galerkin, collocation or spectral methods, but the particle methods use information from a 
set of disordered points based on kernel estimation.'* It is also pointed out by Monaghan13 that SPH 
works quite well for an arbitrarily moving fluid if the number of particles is large and in the absence of 
boundaries; however, there is no systematic way to handle a moving fluid with rigid or moving 
boundaries in SPH. Furthermore, it is not clear how to generalize SPH to non-uniform mass particles 
or what is the effect of the dilation parameter 'u' on the accuracy of the solution. Recently, these 
problems have been addressed by Liu and Chen.' ' 
2.3. Moments 

We shall define the following moments for the window function @(y): 

y i@(y)dR,  (first moment), 

i # j 
i = j (second moment) 

(cross moment) , 

In the above equations the integral is evaluated with respect to the support B(x). Hence the moments 
are functions of x ,  and if B(x) is close to the boundary of the spatial region R,, mo(x) is less than one. 
The subscript indices i and j take values from 1 to NSD, where NSD is the number of space dimensions. 
If @(y) is symmetric, mi(x) = 0 in the interior of R, and mXx) # 0 when x is close to the boundary; 
mil{x), no sum on i ,  denotes the standard deviation of @(y) in the xi-direction; and rnG{x), i # j ,  
denotes the cross moment. Higher-order moments can be defined similarly. We shall employ these 
moments to analyse the reproducing kernel particle interpolation functions which are described next. 

3. REPRODUCING KERNEL PARTICLE INTERPOLATION FUNCTIONS 

The objective is to use the concept of reproducing kernels and the local character of the window 
function to develop an accurate reproducing kernel function from a suitable smooth window function 
Qab(x) multiplied by a correction function C(u, x ,  b). If both @=b(x)  and C(u, x ,  b) are smooth 
functions within the spatial region R,, i.e. the functions and their derivatives are continuous, then we 
have developed global interpolation functions that do not require a finite element mesh or a finite 
difference grid. In particular, unlike the SPH methods, the dilation parameter can take a fairly large 
range of positive values provided that certain stability conditions are met. 

Our goal then is to develop reproducing kernel particle interpolation functions which will have the 
following properties. 
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1. If Qab(x) is an even function, the correction function C(a, x, b) should also be one when the 
support of @=b(x) is not close to the boundary a R,; it differs from one when @&(X) is close to the 
boundary. 

2. A truly element- or mesh-free particle method similar to SPH methods but with much better 
accuracy, especially when the number of particles is small. 

3. Similarly to MLSM, DEM and EFGM, RJSPM provides smoother approximations of the solution 
as well as its derivatives; however, RKPM is computationally more efficient and a mathematical 
analysis of RKPM is also available. 

Remark. The requirement that the correction function C(a, x, b) should be constructed to be one 
when the support of a)ab(X) is not close to the boundary yields eflcient computations, since this 
correction function is only required when @=b(x) is close to the boundary. 

Consider a function u(x) that is to be represented in terms m linearly independent functions Pi(x) and 
a set of unknowns ci in the expression 

rn 
U(X)  = C P i ( X ) C i  

i= 1 

In matrix notation equation (8a) reads 
u(x) = P(x)c, 

where P(x) = {Pl(x), P2(x), . . . , P,(x)} is a vector of m linear independent functions and 
c = ( c l ,  c2, . . . , c,} is the vector of unknown coefficients. A superscript 'T' denotes the transpose. 
In order to define c in terms of the solution locally around any point x, we multiply both sides of (8b) 
by PT(y) and perform the integral window transform with respect to a positive window function a),,(y) 
to yield (x has been replaced by y in (8b)) 

(PTU, a)n) = (PTP, a)&, ( 9 4  
or the vector of coefficients c is solved in terms of the solution u, i.e. 

c = M-' (x) (PTu, 

where the m x m non-singular matrix M(x) is given by 

It is noted that M(x) is a continuous function of the translation (x) of the window function @,(y). 
Substitution of (9b) into (8b) gives the approximation of u(x), denoted uh(x), through a continuous 
reproducing kernel 

d ( x )  = (P(x)M-I(x)PTu, an). (11) 

Using the definition of the integral window transform, uh(x) can be shown to be 

where the reproducing kernel, which is a modified window function, is shown to be 

and the correction function C(a, x, y) is given by 

C ( U , X , ~ )  = P(x)M-'(x)PT(y). (13b) 
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To write (12) in a discrete reproducing kernel particle form, its integral of (12) is discretized by NP 
distinct points using a numerical quadrature formula to yield the usual approximation formula 

NP 

J=  1 

where the reproducing kernel particle interpolation functions are given by 

Comparing (14b) with the SPH interpolation formula (6b), we believe that the discretized correction 
function 

c(a, x ,  Y J )  = P ( x ) M - ’ ( X ) P T ( X J )  (14c) 

will improve the accuracy of the interpolation kernel tremendously, partly owing to boundary 
corrections. Depending on the choice of P(x) ,  we shall show that the correction function is composed 
of the moments defined in Section 2.3. In particular, if P ( x )  is chosen to be a constant and linear 
polynomial 

P ( X )  = {1,Xl,XZ,X3} (1 5 4  

it can be shown that the continuous fknction C(a, x ,  y )  takes the form 

In (15b) C, and C2 are continuous scalar and vector functions of x as well as of the zeroth, first and 
cross moments. A dot denotes the inner product. It will also be shown that Cl(a, x )  = 1 and 
C,(a, x )  = 0 when the support of Q.,,(y), B(x) ,  is not close to the boundary of the domain, whereas 
Cl(a, x )  # 1 and C2(a, x )  # 0 when the window fknction moves close to the boundary of the domain. 

Remark. It can be seen that if u ( x )  = P(x) ,  then 

because of the definition of M ( x ) .  Hence the modified window function k(a, x ,  y )  defined in (13a) 
satisfies the consistency condition 

k ( a , x , y ) y ; d R ,  = x; for q = 0, 1 , .  . . n,  (16b) 
JRr 

where n is the highest order used in P(x) .  For example, if P(x)  is chosen to be { 1, xl, x2, x3, 4,. . . }, 
the reproducing kernel will satisfy the usual isoparametric finite element properties. In a discrete 
approximation, we have 

NP NP 

J=  I J=  1 
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4. EFFECT OF THE DILATION PARAMETER ON THE REPRODUCING KERNEL AND 
STABILITY CONDITION 

In this section we restrict our discussion to one dimension. To explore the accuracy of the RKPM 
interpolation functions, we shall relate the dilation parameter a (sometimes called a scale) to the 
frequency content (in time) or the wave numbedwavelength content (in space). For simplicity, we let x 
be the time axis and w the frequency axis. A similar interpretation can be made when x and w are the 
space and the wave number respectively. 

4.1. Frequency band 

Following Chui,8 we define the centre x* and radius A 4  of a window function @(x) by 

The width of the window function @(x) is defined as 2A4. The norm of @(x) is defined as 

11@l12 = (@> ( 19a) 

ll@abIIi = .-I 11@11;. (19b) 

For our choice of the scaling parameter, the norm of @&) is related to @(x) by 

Suppose that @(x) is any function such that both @(x) and its Fourier transform b ( w )  are window 
functions. Following the definitions (18), the centre frequency w* and the radius A$ of b(w) are given 
by 

4.2. Time-frequency band of the parent reproducing kernel Jitnction 

The centre and radius in Section 4.1 are defined over an unbounded domain so that x* and A 4  are 
invariant with respect to the translation (x). Since the kernel function is a function of y and is defined 
within R,  only, we redefine a parent kernel function as 

k b )  = Cb)a-'@b), (21) 

where CCJ) is equivalent to C(a, x, y) of (1 3b) and the arguments a and x are dropped here because 
they are implicit parameters and only y is a variable. Let us denote the centre and radius of k(y) as 2 and 
AE respectively: 



1088 W. K. LIU, S. JUN AND Y. F. ZHANG 

If the Fourier transform of &) is denoted by i (w) ,  the centre (Oi) and radius ( A i )  of i ( w )  in the 
frequency space are given by 

From the parent kernel function k(y) the two-parameter reproducing kernel function 
ka,(j) = k(a, x, y) can be generated by translation (x) and dilation (a): 

The relationship between the norms of &) and ka,@) is obtained by 

4.3. Time-frequency or space-wave number localization 

the response u with k,(j), 
Because of the linear translation of the reproducing kernel k,(y), the integral window transform of 

localizes the response with a time window or a space window 

[x + a? - aAk;x  + ui + aAk]. (26b) 

3 = x* = constant, Ak = Ak = constant if B(x)  in R,, (26c) 

( 2 6 4  

Furthermore, since the domain is bounded, x* and Ak have been replaced by 3 and AE such that 

? = x* = variable, Ak = Ak = variable if B(x) is close to R,. 

In (26d) x* and Ak have to be computed according to (22). The centre and radius of the reproducing 
kernel fimction k,(y) are shown to be 
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The window width is defined as 2aAk. Therefore the integral reproducing kernel window transform 
can be interpreted as a time or space localization of the response.* Hence the integral window 
transform (26a) gives local information on u with the time or space window in (26b). 

Since the Fourier transform of the reproducing kernel k,@), denoted by k,(w), is also a window 
function, k,(w) is given by 

To study u in the frequency domain, we shall employ the Parseval identity,’ in which the inner product 
of any two continuous functions is related to the inner product of their Fourier transforms, denoted u 
and g respectively, through 

Therefore, if we let gQ = k,(y), the integral reproducing kernel transform (12) becomes 

h 
u ( x )  = (u,  k,) = ii(w)eimxk(aw)dw 

Equation (30) reveals that the integral reproducing kernel window transform also gives local 
information on ii (0) with a frequency-window 

[&/a - Ak/a; &/a  + Ak/a] (31) 
and a bandwidth equal to 2Akla. It is noted that the ratio of the centre frequency and the bandwidth is 
equal to &/2Ak, which is independent of the scaling parameter when the support of the window 
function is within the domain R,. We wish to construct C(a, x, y) so that the ratio is fairly constant 
when x is close to the boundary. Employing the definition of the centre frequency, (23a), and the linear 
transform w’ = a o ,  the centre frequency of &aw) is shown to be 

Similarly, using (23b) and the linear transformation w’ = aw, the radius of &am) can be shown to be 

where 

is the relationship between the norms. 
From the above analysis it is interesting to point out that the integral reproducing kernel window 

transforms in the time or space domain (equation (1 2)) and in the frequency or wave number domain 
(equation (30)) study the response u in a rectangular time-frequency or space-wave number window 
given by 

[x + ai - aAk; x + ai + aAk] x [&/a - Ak/a; &/a + Akla]. (33) 
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The above window narrows to pick up the high-frequency or high-wave-number phenomena of u and 
widens to study the low-frequency or low-wave-number response. This suggests that we employ a 
flexible time-frequency or space-wave number reproducing kernel window to define adaptive 
refinement of the local response of u around any point x." 

4.4. Stability analysis 

If @b) is symmetric, &I is zero. Therefore the frequency window is always located at w = 0 and its 
frequency band becomes 

[ -Ak/a;  Ak /a ] .  (34) 
The smaller a, the larger is the frequency band; the larger a, the smaller is the frequency band. This 
implies that the number of sampling points within B(x) must satisfy the relation 

Ax 5 CON x n / ( A k / 2 a )  = CON x 2zalAk (35) 
to avoid a1ia~ing.I~ Ax is called the sampling rate. The constant CON will depend on the so-called 
frame bounds' 

271 ,. 
A 5 Ik(aw)J2 5 B .  

The positive frame bounds coefficients A and B can be estimated numerically. If AIB is close to one, 
CON will be close to one. Equation (35) is referred to as the stability condition of the reproducing 
kernel window function methods. In practice CON is chosen much less than one.l5 

Remark. With the help of the correction function, we are able to get an explicit expression for the 
stability condition. See Section 5 and Liu et al." 

It is well known that even if the sampling rate satisfies (35) and (36), there is no good choice for a 
high-frequency-band window function that can provide accurate frequency and time resolutions of u 
simultaneously. Therefore for small a an intelligent selection of the frequency band is necessary to be 
effective. One possible way to employ a larger sampling rate in high-frequency or high-wave-number 
analysis is the multiple-scale method proposed by Liu et al. l5 In this approach the response is divided 
into multiple frequency bands via a shifting theorem. If @a&) is a wavelet, then the centre frequency 
& > 0. By breaking a up into different scales, we can perform a multiresolution analysk8 An energy 
ratio method has been developed by Liu and Chen" to determine the optimal dilation parameter a. 

In this paper we restrict ourselves to the analysis of a single frequency band, where @a&) is chosen 
to be the scaling function so that &I = 0. Consequently, depending on the choice of a and the scaling 
function @(x),  the integral reproducing kernel window transform (u, k,) is a measure of the amount of 
change in u at the location x + az with zoom-in (smaller a) and zoom-out (larger a) capability. 

4.5. Limitation of very-low-frequency/wave-number analysis 
The disadvantage of a single-band reproducing kernel analysis is that the method will break down 

for very-low-frequencylwave-number analysis, such as for large dilation parameter a. This can be seen 
by interpreting the reproducing kernel (1 2 )  as a continuous time or space convolution 

where the reproducing kernel is identified as 

k(a ,y )  = C(a,y)a- '@ 
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Applying the Fourier transform to both sides of (37a) and employing the Fubini theorem' on the right- 
hand side yields 

In order for uh(o) to approach G(o) ,  k(a, o) must be constructed such that k(a, o) = 1 for all o; 
however, this will violate the Riemann-Lebesgue lemma that &a, o) = 0 when o approaches +co. An 
approximation of the convolution identity constructs i (a ,  o) so that i(a,w) M 1 as a approaches zero. 
It is well known that the family of Gaussian functions 

Gym) = i ( a ,  o)G(o). (38) 

will satisfy the above conditions provided that C(a, x) is constructed so that it is equal to one when am 
is in the interior of the domain and is fairly constant when am moves close to the boundary. With this 
construction we have 

and the Fourier transform of k(a, x) is 

i ( u ,  w )  = e-azo2/4. 

With the Gaussian function it is noted that a is identified as the standard deviation and i (a,o) 
approaches one as a approaches zero. However, when a is large, (36) will break down, since 
i (a, o) # 1 unless the frequency content of u(x) is close to zero, which is very restrictive. 

From the above argument the dilation parameter should be chosen within a banded range, say 
amin<a <a,. The maximum amax will be chosen so that (40b) is close to one. The minimum amin 
can be a small number provided that the stability condition (35) is met. From our numerical 
experiments we found that a can take a large value. We believe that the correction function C(a, x, y )  
indeed improves the stability as well as the accuracy of the interpolation function. Furthermore, owing 
to the presence of C(a, x, y )  which contains the term x - y, the reproducing kernel particle 
interpolation function as given in (12b) will further increase the order of the shapefinction by one so 
that the convergence rate will also be increased by one when a is large! This will be discussed further 
in the next section. 

We shall employ the Gaussian function and the cubic spline, which is a good approximation to the 
Gaussian function, as the window function (Dab) in the subsequent development. 

4.6. hp-like adaptivity 

It is noted that the choice of an optimal dilation parameter of a given window function is analogous 
to choosing the optimal order of the polynomial resulting from the multiple scale R U M .  It is shown in 
the numerical examples (Section 7), by changing the size of a, the refinement or dilation parameter of a 
single window function, the rate of convergence of the L2 norm (and HI norm) of a smooth Laplacian 
solution varies from 2 to 16 (and 1 to 15) for a Gaussian window, and 2 to 5 (and 1 to 4) for a cubic 
spline window. This shows that the multiple scale RKPM has a similar feature of the adaptive p-finite 
element methods. However, the high convergence rate, or equilvalently, the high value of p ,  can be 
achieved simply by increasing the size of the refinement parameter of a single window function. This 
avoids the awkward implementation of the traditional p-finite elements, and there is no apprehension 
of the compatibility (or continuity) along the element boundaries of the hp-finite element mesh, since 
RKPM requires only a set of nodes and the global shape functions can be Coo. 

As in p-finite element methods, exponential convergence of smooth solutions can be achieved for 
this class of multiple scale RKPM. However, if there is a discontinuity in the solution, such as a shock, 
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high convergence behaviour is lost. h-like adaptive reproducing kernel particle methods, comparable to 
the h-finite element method, can be developed by inserting nodes in the high gradient region and at the 
same time, narrowing the size of the window function (i.e. a smaller a )  to pick up the fine-scale 
structure of the response. This zooming in process together with the additional of nodes will result in 
an hp-like adaptive refinement alogrithm. Based on the multiple scale decomposition and the highest 
wavelet scale response, a convergence parameter or an error estimation indicator as presented in Liu 
and Chen” can be employed to locate the adaptivity regions. 

5. EXAMPLES OF REPRODUCING KERNEL WINDOW FUNCTIONS 

We let the independent functions be 

P(x) = { l , ~ }  lD, 

P ( X )  = {l’Xl,X2) 2D, 

p(x)  = {l,XI,XZ,X3} 3D. 

By substituting the above vector of independent polynomials into (1 0) and (1 3b), the correction 
function C(a, x, y) can be separated into two terms, 

where Cl and C2 = { C21, . . . , C,,,,} are a scalar and a vector respectively which can be defined in 
terms of the zeroth, first and cross moments. It is noted that all moments are in general a fkction of 
the location of the window function, x, though they are constants if B(x) is not close to the boundary. 
The expressions for C1 and C2 and the stability condition in lD, 2D and 3D are as follows. 

One dimension: 

m1 
mOml1 - m:’ C2(a ,x)  = 

In a numerical approximation Ax has to be chosen such that 

2 momll - m, > 0 .  
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In a numerical approximation Axl, Ax2 and Ax3 have to be chosen such that 

D > 0 .  (45f) 

Because of the special properties of the moments, Cl(a, x) = 1 and Cz(a, x) = 0 when the window 
function is within R,, whereas Cl(a, x) # 1 and Cz(a, x) # 0 when the window function is close to 
the boundary. It is particularly important to point out that if a is large, the support B(x) is large. Then 
the linear term appearing in (42), C2(a, x)o[(x - y)/a], plays an important part in the accuracy and 
convergence rate of the method. 

From (12) and (1 3 )  the reproducing kernel function and the approximation uh(x) are given by 

Therefore, if @(Y) (Y = IIx - y1I2) is the cubic spline function, the order of polynomials of @(r) is equal 
to three. In a Galerkin formulation the convergence rates of the solution (L2 norm) and its first 
derivatives (H1 norm) (see Section 7 for definitions) are expected to be four and three respectively. 
However, when a is larger, observing from the discretized equations (46a) and (42) (with y replaced by 
xJ), the order of the polynomial of the reproducing kernel k(u, x, y) can be increased by one, so that 
the L2 and H1 convergence rates can be as high as five and four respectively. This unusual 
phenomenon is observed in our 1D numerical experiments. The convergence rates are much higher 
when @(r) is replaced by a Gaussian function. 

Another interesting observation can also be made from (42). In order to increase the convergence 
rate by one order, it is suggested to underintegrate the first moment so that it is close to zero, then the 
term Cz(a, x)o[(x - y)/a] can act as a stabilization term to the SPH methods. At the same time this 
stabilization term can also improve the accuracy as well as the convergence rate. One way to achieve 
this is to use the trapezoidal rule to integrate the matrix M(x) (i.e. the moments) at each x. 

For higher-order polynomials, as well as other independent functions, P(x) can also be similarly 
investigated for this class of RKPM interpolation functions; however, from our numerical experiments 
we found that the use of linear polynomials is accurate enough for most purposes. We also found that 
linear polynomials give numerically more stable calculations than higher-order polynomials. 
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6 .  SIMILARITIES AMONG SPH, DEM, EFGM AND FXPM INTERPOLATION FUNCTIONS 

For an illustration of the comparison among the various interpolation functions, only one-dimensional 
linear polynomials P(x) = { 1, x} are implemented. The window function @(x) is chosen to be a 
positive even function. If we use the trapezoidal rule to discretize the reproducing kernel (12), the 
shape function N; (x) of RKPM is (a > 0)  

x - XJ x - XJ 
N%) = [ C l ( X )  + c2(x) ( - - ) ]u-1@(T)MJ,  (474 

(47b) C l ( x )  = m11/(mom11 - m:), 

C2(X) = ml/(momll - 41, (47c) 

where AMJ is the Jth particle mass. If mo = 1, m11 # 0 and ml = 0, the SPH interpolation shape 
fiinction can be obtained. As a matter of fact, the shape functions of RKPM and SPH are equivalent in 
the interior, but there is a big difference when they are close to a boundary. Hence the SPH methods are 
not accurate when boundaries are present. 

Direct differentiation of (47a) gives 

Nf&((x) = [c: (x )  + c ; ( x ) ( x - x J )  + C2(X)]a- '@(x-xJ)AMJ 
(484 

1 (48b) 

, (48c) 

+ [cl(x) + C2(X)(X--J)]a-'@'(x-xJ)AMJ, 
m:, 

m: 

- mll(mbm1l +mom',l - 2mlmi)  

- ml(mbmll+  mom',l - 2rnlm;) 

c; = 

c; = 

mom11 - m: 

mom11 - m: 

(mom11 - m:I2 

(mom11 - m:I2 

In the above expressions, a prime denotes differentiation with respect to the argument. 
Without going into details, the MLSM, DEM and EFGM interpolation functions can be written as4 

when constant and linear polynomials P,(x) are employed. The matrices P(x), A(x) and B(x) are defined 
bY 

P T ( 4  = { P l , P Z } ,  Pl(X) = 1, P Z ( 4  = x, (49b) 

A(x) = ~ ~ - ~ @ ( x - x ' ) P ( x , ) P ' ( x , ) ,  U 
I = 1  

B(x) = [u- '@r+)P(xl ) ,  . . . ( 4 9 4  

where n is the number of points in the neighbourhood of x for which the weight function 
a-'@[(x - X J U ]  # 0, and XI are the nodal co-ordinates of uI. The derivatives of NAx) of EFGM given 
by Belytschko et d4 

2 

N:&) = C{f'j,x[A-lB],J 4- Pj[A,'B + A-'B,ljJ} (50a) 
j= 1 
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and the derivative of the matrix A-' is given by 

(50b) A-1 = -A-~A ~ - 1 .  + J 

The derivation of NAx) of DEM developed by Nayroles et d3 assumes A and B constant, so that 

2 

N~+(x) = zP,J[A-'B]jJ. 
j= 1 

It is noted that no particle mass AMJ or nodal length AxJ is included in (49x51). Furthermore, the 
matrices A and B need to be computed at each quadrature point x. 

Although it is not very apparent, an interesting result arises under the following three conditions. 

1. The nodal co-ordinates xl are equally spaced. 
2. The trapezoidal rule is used to numerically integrate M(x). 
3. The integration weights Ax.,, AMJ and pJ in (47a) and (48a) are all set equal to one. 

s: and NFz in (47a) and (48a) can be shown to be equivalent to NJ and sfz in (49a) and (5Oa) 

With the above assumptions, Ny+ can be similarly defined from the RKF'M interpolation functions 
respectively. 

(with AMJ= 1): 

(52) 

Comparing (48a) with (52), depending on @(x), the derivative NJJ might not be an accurate 
approximation to Nf+ ,  especially for large U-values. For example, let us use the cubic spline functions 

2 
3 @ ( r )  = - - 4?/Q + 4r3/Ax3 for 0 5 r/Ax 5 f, (534 

4 
3 

@(r)  = - - 4 r / h  + 4?/Q - 4r3/3Ax3 for f 5 r/Ax 5 1, 

r = IIY - 4 1 2  (53c) 

as the window function and set the dilation parameter such that a = ?+O.' for j 2 0. The parameter 
j = 0 is adjusted so that Ax is right at the stability limit (see equations (35) and (36)). This corresponds 
to the smallest time bandwidth or the largest frequency bandwidth of the window function. Let 
us consider a set of 21 equally spaced nodes with Ax = 0-3 representing the domain 0 5 x 5 6.0. 
If we use a trapezoidal rule to discretize the domain, then Ax1 = Ax21  = 0.15 and 
Ax2 = Ax3 = . . . = = 0.3. With this discretization and p = 1 the shape function given in (47a) 
and its derivatives using (48) (exact) and (52) (approximate) are depicted in Figures 1 and 2 
respectively for nodes 1, 10 and 21. As can be seen for j = 0 (right at the stability limit), the shape 
function and its derivatives look similar to those for the usual linear finite elements; however, the 
derivatives of RKPM shape functions are continuous and try to reproduce the finite element 
discontinuous derivatives. For j = 1.0 and 2.0 there is not much difference between the two 
derivatives, especially for node 10 where the support is within the domain. There is a large difference 
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1 2 ,  I 

08 

j = 2.0 

0 0  06 12 18 24 30 3 6  42 48 54 6 0  

j = 3.0 

0.6 

o'8 1 
0.4 -r\ 

0.0 06 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0 0.0 0.6 12 1.8 2.4 3.0 36 4.2 48 54 6 0  
X X 

Figure 1. Plots of interpolation functions at node 1 (x = O.O), node 10 (x = 2.7) and node 21(x = 6.0) 

node 10 - node21 
- - - - - -. node 1 EqS6.2) 

node 10 Eq.(6.2) 
node 21 Eql6.2) 

l -  
- - - -___ , ' - - - - - - - 

-4 
0.0 0.6 12 18 2.4 3.0 3.6 4.2 4 8  5.4 6.0 

-4 
00 0 6  12 18 24 3 0  36 4 2  48 54 6 0  

1 

j = 3.0 

-3 
00 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0 

X 

1 
00 06 12 18 2 4  3 0  36 4 2  48 54 6 0  

X 

Figure 2. Derivatives of interpolation functions using exact and approximate formulae at node 1 (x = 0), node 1O(x = 2.7) and 
node 21 (x = 6.0) 
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between the two derivatives when the shape functions are located at the boundaries (x = 0-0 and 6.0). 
This difference will produce inaccurate derivatives in (52) and the solution deteriorates. 

If we choose @(r) as a Gaussian function such that 

A x 1  
CT, j 2 0, and - - a = 2j+0.5 

a&=&' 

With CT as the standard deviation, the exact derivative given in (48) and the approximate derivative 
given in (52) become respectively 

~0 m1 r+> a-l@ r+> mJ - { a(mom11- m:) a(mom11 - m:) 
N f : ( x )  = - 

(55b) 
When the derivatives of the shape function are not evaluated close to the boundaries (ml = 0),  the two 
derivatives are represented with the same function a-'@((x - xJ)/a) but different coefficients. When 
the derivatives are evaluated close to the boundaries, the two derivatives are again represented by the 
same Gaussian function and from numerical experiments the quadratic term [(x - xJ)/aI2 appearing in 
(55a) does not play an important role. Therefore (55b) is a good approximation to (%a). This is further 
elaborated in the next section. 

7. NUMERICAL EXPERIMENTS 

7.1. Convergence study 

We employ a one-dimensional Laplacian-type equation 

us + 2s2sech2[s(x - 3)]tanh[s(x - 3)] = 0 (564 

with essential boundary conditions 
u(0) = -tanh(3s), 

u(6) = tanh(3s). (56c) 
The parameters controls the degree of localization of the gradient of u (u,). As s increases, us, has an 
increasing gradient. The exact solution is 

U(X) = tanh[s(x - 3)]. (564  
In a numerical approximation we employ a Galerkin formulation of (56a) and the boundary conditions 
are enforced via the standard Lagrange multiplier approach. For a detailed description of this problem 
and the implementation of the boundary conditions see Reference 4. 

We shall utilize the cubic spline and Gaussian function described in Section 6 as window functions. 
For simplicity, linear polynomials P(x) = { 1, x} and s = 10 are used throughout. Five different 
discretizations with Ax = 0.3 (21 nodes), 0.15 (41 nodes), 0-075 (81 nodes), 0.0375 (161 nodes) and 
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- 2 0 : .  , . ,  . , . , . I .  I .  I .  I .  1 . - I  
0.0 0.6 1.2 1 . 8  2 . 4  3.0 3 . 6  4 . 2  4 . 8  5 .4  6.0 

X 

Figure 3. Comparison of SPH solutions with exact solution 

0-025 (241 nodes) are solved. It is noted that, similarly to SPH, DEM and EFGM, RKF'M does not 
require an element or element connectivities. The standard L2 and H1 error norms are defined as 

(574 

(Hlnorm) = (uxexact - u,: )2&l J: 
Spline (Approximation) Spline( Exact ) 

O 
>(a) 

0 

-2 

-4 

-6 

-8  

-10 

-12 

-14 

Convergence raw: - j a . 5  

----t j=l.O (2) 5 70 

5 530 
--f j 2 . 5  

( 3 )  3.85 (4) 1.91 
-6 - 

E 

-8 * - .  
- 4  - 3  - 2  - 1  - 4  - 3  - 2  - 1  

InAx  InAx 

l o -  --C Ax=0.1500 
. ----c Ax=0.0750 
--C Axd.0375 
--C A x 4 0 2 S O  '- 

E .  
8 
6 -  

2 .  
4 -  

2 -  

0 I 2 3 4 
1 

0 3  h 

0 1 2 3 4 
j 

Figure 4. L2 norm and convergence plots using approximate and exact formulae for the derivatives of the interpolation function 
using a cubic spline window function 
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The rates of convergence are defined as the slopes p and q appearing in the ln(error) versus Inkt 
equations 

ln(L2 norm) = In G1 + p In Ax, 

ln(H2 norm) = In G2 + qInAx. 
(584 

(58b) 

As the constants G1 and G2 become smaller, the method becomes more accurate. Also, the higher p 
and q, the faster is the rate of convergence. To obtain the convergence plots, 10 and 12 Gauss 
quadrature points are used to integrate the matrices and errors respectively. Nevertheless, only three to 
five Gauss quadrature points are sufficient to integrate the matrices accurately. The trapezoidal rule is 
used to integrate all the moments. 

The exact solution of u , ~  and the SPH Galerkin approximations using a Gaussian window, 8 1 nodes 
(Ax = 0.075) and 0 = Ax/(O.lJif) and Ax/(0*5&) are depicted in Figure 3. It is seen that the SPH 
solution depends very much on the dilation parameter (or the standard deviation). As a matter of fact, 
for a given Ax, the larger (r (the larger the window), the better is the gradient at the centre. However, 
both choices of 0 give bad approximations of the gradient of u at the boundaries. This confirms that 
SPH interpolation functions do not work well with boundaries. 

The L2 and H1 norm plots for the spline window function are shown in Figures 4 and 5 respectively. 
As can be seen in Figures 4(b) and 4(d) and Figures 5(b) and 5(d), (48) works better than (52) when a 
is large (i.e. j is large). Similar conclusions can also be drawn from Figures 4(a) and 4(c) and Figures 

Spline (Approximation) Spline (Exact ) 

I 
- 4  - 3  - 2  - 1  
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-0- Ax=O 3Mx) 
6 ---t Ar=O ISW 
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-4 
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-8 
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-12 

Convergewe rate: 

(2) ( 5 )  3." 
(3)2.00(4)091 

- 1 4 4  
- 4  -3 - 2  

InAx 

0 2 3 4 0  I 2 3 4 
j j 

1 

Figure 5 .  H1 norm and convergence plots using approximate and exact formulae for the derivatives of the interpolation function 
using a cubic spline window function 
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5(a) and 5(c). One interesting observation is that the L2 and HI convergence rates (see Figures 4(c) 
and 5(c)) can be as high as 5.7 and 3.9 respectively. This confirms our analysis in Section 6. 

Similarly, the L2 and H1 convergence rate plots shown in Figures 6 and 7 respectively are produced 
using the Gaussian window function. The standard deviation and dilation parameter are chosen such 
that 

(58c) 

As predicted in Section 6, the two formulae for the derivatives give virtually identical results. It is 
interesting to point out that the L2 and H1 convergence rates can go as high as 15.92 and 14.91 
respectively. These numerical results show that a meshless p-like adaptive variable-node multiple scale 
RKPM can be obtained by a combination of the translation and dilation of a single flexible window 
function (Liu and Chen"). Finally, in Table I the peak values of uq are compared with the standard 
linear finite element method (FEM) and the exact solution. RKPM is able to capture the high 
resolution of the steep localized gradient using a flexible space-wave number Gaussian window 
function. 

Remark. The two parameters in the scaling function provide the ability to translate and dilate the 
window function. Translation is required to move the window function around the domain since the 
window functions themselves have a compact support. The ability to translate replaces the need to 
define elements. The dilation parameter is used to provide refinement. This dilation parameter also 

Gaussian (Approximation) Gaussian(Exae1) 
0 

-10 

Convergence rate: 

-20 -. . 
- 4  - 3  - 2  - 1  - 4  - 3  - 2  - 1  

InAx InAx 

I i  t\ 
I 0 I 2 3 4 0 I 2 3 4 5 

1 
1 

Figure 6. L2 norm and convergence plots using approximate and exact formulae for the derivatives of the interpolation function 
using a Gaussian window function 
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Figure 7. H1 norm and convergence plots using approximate and exact formulae for the derivatives of the interpolation function 
using a Gaussian window function 

controls the convergence rate of the multiple scale W M .  As shown in the above numerical examples, 
the rate of convergence of the L:! norm (and HI norm) of a smooth Laplacian solution varies from 2 to 
16 (and 1 to 15) for a Gaussian window; and 2 to 5 (and 1 to 4) for a cubic spline window by simply 
changing the refinement or dilation parameter of a single window function. This combination of 
translation and dilation produces a meshless p-like adaptive variable-node multiple scale R U M .  The 
larger the dilation parameter, the smaller the frequency band is in the solution, and the larger the 
critical time step becomes in dynamic analyses (Liu et al. lo). The refinement parameter transformation 
between the time and frequency domain (or space and wave number) controls the solution space. This 
introduces the ability to choose the size of the frequency or wave number range in the calculation. The 
application of this multiple frequency and/or wave number concepts to multi-grid methods will be 
exploited in a companion paper. 

Table I. Comparison of derivative peak values among W M ,  EM and exact solution 

Reproducing kernel particle method (Gaussian) 

Ax J .=  0.5 j = 1.0 J . =  1.5 J' = 2.0 J .=  2.5 J . =  3.0 FEM Exact 

0.300 3.5100 3.8315 4.6672 5.3217 5.4837 5.1865 3.3168 9.9923 
0.15 6.3599 6.7798 7.6968 8.3095 8.5252 8.5419 6.0343 9.9980 
0.075 8.7556 9.0684 9.6081 9.8416 9.8864 9.9010 8.4687 9.9995 
0.0375 9.6788 9-7992 9.9605 9.9984 9.9995 9.9996 9.5562 9.9998 
0.005 9.8580 9.9155 9.9861 9.9998 9.9999 9.9999 9.7967 9.9999 
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7.2. 2 0  advection-diflusion equation 

The scalar advection-difision equation is given as 

Advection-dominated flow skewed to the mesh is considered here. The problem statement is given by 
many authors; see e.g. Reference 16. It has been noted that the streamline upwindRetrov-Galerkin 
method requires a discontinuity-capturing term in the weighting function for smoothing the solution 
near the discontinuity. However, the multiple solution decomposition analysis developed by Liu and 
Chen' improves the solution without the discontinuity-capturing term and enables us to determine 
where the local refinement is needed. In this numerical example a square window with the dilation 
parameter a = 1.1892 is employed. A 3 x 3 dyadic (power of 2) multiple scale decomposition (a 
scaling function scale and two wavelet scales) is performed on the computed solution using 21 x 21 
nodes. The reference solution, the total solutions (using 21 x 21 nodes) and the low scale solution 

1 1 

0 5  0 5  

0 0 

0 0 

0 0 

1 1 

Reference Solution RKPM Solution Without Aliasing Control (21x2 I )  

1 1 

0 5  0 5  

0 0 

0 0 

0 0 

1 1 

RKPM Solution With Aliasing Control (21x21) RKPM Solution With Aliasing Control (41x41) 

Figure 8. Solutions of 2 D  advection-difision equations 
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using different refinements are depicted in Figure 8. It is noticed that the low scale solution consists of 
only the scaling function solution, and the higher wavelet scale solutions, which contain mostly 
aliasing wave number solutions, are removed. As can be seen, the comparison with the 41 x 41 nodes 
solution and the reference solution is fairly good. 

7.3. 2 0  compressible Euler equation 

The compressible Euler equations in conservation form are written as 

au a~~ 
at axi -+--0, 

where the 2D conservative variables U and the Euler flux F i  are given by 

P U i  

U i b  + P )  

(a) RKPM solution without aliasing control 

(b) RKPM solution with aliasing control (2 x 2 decomposition) 

i 

(c) High wave number hand (wavelet) solution 

Figure 9. Solutions of 2D compressible Euler equations (Mo = 0.5) 
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(a) RKPM solution without aliasing control 

(b) RKPM solution with aliasing control (3 x 3 decomposition) 

(c) High wave number hand (wavelet) solution 

Figure 10. Solutions of 2-D Compressible Euler Equations (Mo = 1.4) 

The numerical example is a thin biconvex airfoil approximation problem discussed by Hughes and 
Te~duyar. '~ Three Mach numbers (Mo = 0.5,0.84 and 1.4) of inflow conditions are used for subsonic, 
transonic and supersonic flows, respectively. For the case of Mo = 0.5, 41 x 31 nodal point are 
employed and the computational domain is (- 2-0, 2.0) x (0, 1.5). For transonic flow condition 
(A4 = 0.84), 81 x 21 nodes and the domain of (- 2-0, 2.0) x (0.0, 1 .O) are used while the domain of 
(-1.5, 1.5) x (0, 1.0) and 66 x 21 nodes are employed for supersonic flow ( M =  1-4). In this 
example, a square window of a = 1 -23 1 14 is used. Figures 9, 10 and 1 1 show the contour plots for the 
pressure for each inflow Mach number. Similar to the previous example, a 2 :< 2 multiple scale 
decomposition for subsonic and supersonic flow and a 3 x 3 for transonic flow have been performed 
to remove the high wave number band solutions. Those figures depict the numerical solutions without 
aliasing control, numerical solutions with aliasing control (by taking high and medium wave number 
band solutions out), and the high wave number band (wavelet) solutions. The detailed computational 
procedures will be presented in a companion paper. 
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(a) RKPM solution without aliasing control 

(h) RKPM solution with aliasing control (2 x 2 decomposition) 

(c) High wave number band (wavelet) solution 

Figure 1 1. Solutions of 2-D Compressible Euler Equations (Mo = 1.4) 

8. CONCLUSIONS 

In this paper, mesh- or grid-free interpolation functions are reviewed and studied. The dilation and 
translation of a window function, the integral window transform and the SPH interpolation kernel 
functions are reviewed. Through an understanding of the merits and deficiencies of SPH, MLSM, 
DEM and EFGM, a new continuous reproducing kernel particle interpolation function is derived in 
terms of a flexible time-frequency or space-wave number localized window function. Comparing with 
the SPH interpolation function, a continuous correction function to the SPH methods, which is 
composed of the various moments of the window function, is identified. This is the key success of the 
RKPM. It is noted that no artificial viscosity is needed in RPKM as compared to SPH methods. 

The effect of the dilation parameter and the stability condition of this new discretized reproducing 
kernel particle interpolation function are discussed. The convergence rate of this class of RKPM 
interpolation functions using a Galerkin method is shown to be at least one order higher than that of the 
window function when the dilation parameter is large. In particular, exponential convergence is 
observed with a Gaussian window function. This results in the development of a meshless hp-like 
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adaptive variable-node multiple scale RKPM, see Liu and Chen.” Since the correction function and 
the window hnction can be chosen to be smooth, the solution as well as its derivatives are continuous 
throughout the entire domain of interest, unlike the usual finite element methods. In addition, 
borrowing the multi-resolution idea of wavelet theories, RKPM can provide a multiple scale 
decomposition which enhances the physical interpretation of the computed solution. The numerical 
experiments confirm the theoretical analysis presented in this paper. 
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